

Pesagem em química analítica: Correção de Empuxo

Ricardo Rezende Zucchini

Introdução

Pesagens são fundamentais para a maioria dos processos analíticos. Muitos profissionais sabem que as pesagens analíticas podem precisar de correções de empuxo.

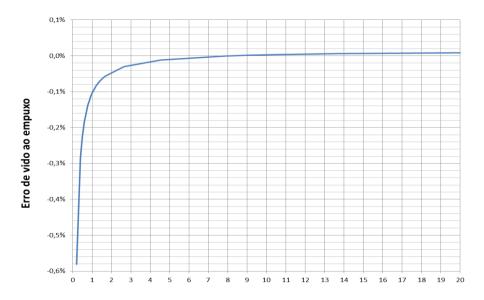
Comentário

As pesagens em laboratório analítico, quase sempre são sujeitas ao efeito do empuxo do ar. O empuxo é uma força que se opõe ao peso, e de maneira simplificada, tem uma intensidade aproximadamente igual ao peso de ar que ocuparia o volume da amostra.

Cálculos

Existem maneiras sofisticadas de lidar com o problema, no entanto, o uso da Equação (1), (adaptada de Skoog, 2006) resolve o problema de forma prática. O símbolo μ indica para massa específica do material.

$$m{P_1} = (m{1} + m{P_2}) \cdot \left(rac{\mu_{\,ar}}{\mu_{amostra}} - rac{\mu_{ar}}{\mu_{peso\,\,padr\~ao}}
ight)$$
 Equação (1)


Exemplos

Alguns exemplos de correções de empuxo em pesagens de 5,0g de materiais comuns em laboratórios. As massas específicas dos materiais são aproximadas, e a dos pesos padrão foi considerada 8,0 g/cm3.

Material	Massa específica	Massa lida	Erro a corrigir	Massa correta
	g/cm³	g	%	g
Etanol	0,78	5,0000	-0,14%	5,0069
Gasolina	0,80	5,0000	-0,13%	5,0068
Lubrificante automotivo	0,85	5,0000	-0,13%	5,0063
Madeira, carvalho	0,92	5,0000	-0,12%	5,0058
Água	1,00	5,0000	-0,10%	5,0053
Glicerina	1,20	5,0000	-0,08%	5,0043
HNO3 36%	1,22	5,0000	-0,08%	5,0042
PVC	1,40	5,0000	-0,07%	5,0035
Açúcar	1,57	5,0000	-0,06%	5,0031
Vidro	2,60	5,0000	-0,03%	5,0016
Alumínio	2,70	5,0000	-0,03%	5,0015
Aço	7,90	5,0000	0,00%	5,0000
Prata	10,50	5,0000	0,00%	4,9998
Mercúrio	13,60	5,0000	0,01%	4,9997
Platina	21,40	5,0000	0,01%	4,9995

Visualização

Massa específica da amostra (g/cm3)

Conclusão

Correções de empuxo são mais importantes quando se estiver pesando materiais com baixa massa específica, com os líquidos. Observe também que se for utilizada a técnica de pesagem de diferenças, o erro devido ao empuxo do ar fica ainda menos importante.

Bibliografia

Baccan, N.; Andrade, J. C.; Godinho, O. E. S.; Barone, J. S. Química Analítica Quantitativa Elementar, 2a edição. Campinas: Editora da Unicamp, 1995.

Battino R.; A. G. Williamson, J. Chem. Educ., 1984, n. 64, p. 51.

OIML D28 Conventional Value of the Result of Weighing in Air (edition 2004); International Organization of Legal Metrology

OIML Recommendation R111 (parts -1 and -2), Weights of Classes E1, E2, F1, F2, M1, M1-2, M2, M2-3 and M3 (ed. 2004); International Organization of Legal Metrology

Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, s. R. Fundamentos de Química Analítica. Tradução Marco Tadeu Grassi. Revisão Técnica Célio Pasquini. São Paulo: Pioneira Thomson Learning, 2006.

Winward M. R. Et al., Anal. Chem., 1977, n. 49, p. 2126.